Multi-algebras from the viewpoint of algebraic logic

dc.contributor.authorCırulis, J.
dc.date.accessioned2019-06-15T17:37:46Z
dc.date.available2019-06-15T17:37:46Z
dc.date.issued2003
dc.description.abstractWhere U is a structure for a first-order language L ≈ with equality ≈, a standard construction associates with every formula f of L ≈ the set kfk of those assignments which fulfill f in U. These sets make up a (cylindric like) set algebra Cs(U) that is a homomorphic image of the algebra of formulas. If L ≈ does not have predicate symbols distinct from ≈, i.e. U is an ordinary algebra, then Cs(U) is generated by its elements ks ≈ tk; thus, the function (s, t) 7→ ks ≈ tk comprises all information on Cs(U). In the paper, we consider the analogues of such functions for multi-algebras. Instead of ≈, the relation ε of singular inclusion is accepted as the basic one (sεt is read as ‘s has a single value, which is also a value of t’). Then every multi-algebra U can be completely restored from the function (s, t) 7→ ks ε tk. The class of such functions is given an axiomatic description.uk_UA
dc.identifier.citationMulti-algebras from the viewpoint of algebraic logic / J. Cırulis // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 20–31. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2001 Mathematics Subject Classification: 08A99; 03G15, 08A62.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/154670
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleMulti-algebras from the viewpoint of algebraic logicuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Cırulis.pdf
Розмір:
158.11 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: