Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matri

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

In a system of coupled harmonic oscillators, the interaction can be represented by a real, symmetric and positive definite interaction matrix. The quantization of a Hamiltonian describing such a system has been done in the canonical case. In this paper, we take a more general approach and look at the system as a Wigner quantum system. Hereby, one does not assume the canonical commutation relations, but instead one just requires the compatibility between the Hamilton and Heisenberg equations. Solutions of this problem are related to the Lie superalgebras gl(1|n) and osp(1|2n). We determine the spectrum of the considered Hamiltonian in specific representations of these Lie superalgebras and discuss the results in detail. We also make the connection with the well-known canonical case.

Опис

Теми

Цитування

Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matri / G. Regniers, Joris Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced