Elliptic Determinantal Processes and Elliptic Dyson Models

dc.contributor.authorKatori, M.
dc.date.accessioned2019-02-19T19:40:23Z
dc.date.available2019-02-19T19:40:23Z
dc.date.issued2017
dc.description.abstractWe introduce seven families of stochastic systems of interacting particles in one-dimension corresponding to the seven families of irreducible reduced affine root systems. We prove that they are determinantal in the sense that all spatio-temporal correlation functions are given by determinants controlled by a single function called the spatio-temporal correlation kernel. For the four families AN₋₁, BN, CN and DN, we identify the systems of stochastic differential equations solved by these determinantal processes, which will be regarded as the elliptic extensions of the Dyson model. Here we use the notion of martingales in probability theory and the elliptic determinant evaluations of the Macdonald denominators of irreducible reduced affine root systems given by Rosengren and Schlosser.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications. The full collection is available at https://www.emis.de/journals/SIGMA/EHF2017.html. The author would like to thank the anonymous referees whose comments considerably improved the presentation of the paper. A part of the present work was done during the participation of the author in the ESI workshop on “Elliptic Hypergeometric Functions in Combinatorics, Integrable Systems and Physics” (March 20–24, 2017). The present author expresses his gratitude for the hospitality of Erwin Schr¨odinger International Institute for Mathematics and Physics (ESI) of the University of Vienna and for well-organization of the workshop by Christian Krattenthaler, Masatoshi Noumi, Simon Ruijsenaars, Michael J. Schlosser, Vyacheslav P. Spiridonov, and S. Ole Warnaar. He also thanks Soichi Okada, Masatoshi Noumi, Simon Ruijsenaars, and Michael J. Schlosser for useful discussion. This work was supported in part by the Grant-in-Aid for Scientific Research (C) (No. 26400405), (B) (No. 26287019), and (S) (No. 16H06338) of Japan Society for the Promotion of Science.uk_UA
dc.identifier.citationElliptic Determinantal Processes and Elliptic Dyson Models / M. Katori // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 43 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 60J65; 60G44; 82C22; 60B20; 33E05; 17B22
dc.identifier.otherDOI:10.3842/SIGMA.2017.079
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149273
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleElliptic Determinantal Processes and Elliptic Dyson Modelsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
079-Katori.pdf
Розмір:
629.3 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: