On the Spectra of Real and Complex Lamé Operators

dc.contributor.authorHaese-Hill, W.A.
dc.contributor.authorHallnäs, M.A.
dc.contributor.authorVeselov, A.P.
dc.date.accessioned2019-02-18T16:10:46Z
dc.date.available2019-02-18T16:10:46Z
dc.date.issued2017
dc.description.abstractWe study Lamé operators of the form L=−d²/dx²+m(m+1)ω²℘(ωx+z₀), with m∈N and ω a half-period of ℘(z). For rectangular period lattices, we can choose ω and z0 such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a band structure with not more than m gaps. In the first part of the paper, we prove that the opened gaps are precisely the first m ones. In the second part, we study the Lamé spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the m=1 case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the m=2 case, paying particular attention to the rhombic lattices.uk_UA
dc.description.sponsorshipWe are grateful to Jenya Ferapontov, John Gibbons and Anton Zabrodin for very useful and encouraging discussions, and especially to Boris Dubrovin, who many years ago asked one of us (APV) about the position of open gaps in the spectra of Lam´e operators. We would like to thank Professor Gesztesy for his interest in our work and for pointing out further relevant references, including [1] and [9]. The work of WAH was partially supported by the Department of Mathematical Sciences at Loughborough University as part of his PhD studies.uk_UA
dc.identifier.citationOn the Spectra of Real and Complex Lamé Operators / W.A. Haese-Hill, M.A. Hallnäs, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 34L40; 47A10; 33E10
dc.identifier.otherDOI:10.3842/SIGMA.2017.049
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148577
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOn the Spectra of Real and Complex Lamé Operatorsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
049-Haese-Hill.pdf
Розмір:
1.05 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: