A View on Optimal Transport from Noncommutative Geometry

dc.contributor.authorD'Andrea, F.
dc.contributor.authorMartinetti, P.
dc.date.accessioned2019-02-09T09:38:18Z
dc.date.available2019-02-09T09:38:18Z
dc.date.issued2010
dc.description.abstractWe discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first show that on any - i.e. non-necessary compact - complete Riemannian spin manifolds, the two distances coincide. Then, on convex manifolds in the sense of Nash embedding, we provide some natural upper and lower bounds to the distance between any two probability distributions. Specializing to the Euclidean space Rⁿ, we explicitly compute the distance for a particular class of distributions generalizing Gaussian wave packet. Finally we explore the analogy between the spectral and the Wasserstein distances in the noncommutative case, focusing on the standard model and the Moyal plane. In particular we point out that in the two-sheet space of the standard model, an optimal-transport interpretation of the metric requires a cost function that does not vanish on the diagonal. The latest is similar to the cost function occurring in the relativistic heat equation.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. We would like to thank Hanfeng Li and anonymous referees for their valuable comments.uk_UA
dc.identifier.citationA View on Optimal Transport from Noncommutative Geometry / F. D'Andrea, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 58B34; 82C70
dc.identifier.otherdoi:10.3842/SIGMA.2010.057
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146358
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA View on Optimal Transport from Noncommutative Geometryuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
057-D'Andrea.pdf
Розмір:
575.9 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: