Hopf Maps, Lowest Landau Level, and Fuzzy Spheres

dc.contributor.authorHasebe, K.
dc.date.accessioned2019-02-09T20:29:48Z
dc.date.available2019-02-09T20:29:48Z
dc.date.issued2010
dc.description.abstractThis paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an interesting hierarchical structure made of ''compounds'' of lower dimensional spheres. We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions. With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The ful`l collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. I would like to thank Yusuke Kimura for collaborations. Many crucial ingredients in this review are based on the works with him. I am also indebted to Takehiro Azuma for email correspondence about mathematics of fuzzy spheres. Since this article is a review-type, many important works not performed by the author are included. Hereby, I express my gratitude to the researchers whose works are reviewed in the paper.uk_UA
dc.identifier.citationHopf Maps, Lowest Landau Level, and Fuzzy Spheres / K. Hasebe // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 102 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 17B70; 58B34; 81V70
dc.identifier.otherDOI:10.3842/SIGMA.2010.071
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146533
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleHopf Maps, Lowest Landau Level, and Fuzzy Spheresuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
071-Hasebe.pdf
Розмір:
515.94 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: