Implementing of Microsoft Azure machine learning technology for electric machines optimization

dc.contributor.authorPliuhin, V.
dc.contributor.authorSukhonos, M.
dc.contributor.authorPan, M.
dc.contributor.authorPetrenko, O.
dc.contributor.authorPetrenko, M.
dc.date.accessioned2019-09-20T19:31:38Z
dc.date.available2019-09-20T19:31:38Z
dc.date.issued2019
dc.description.abstractPurpose. To consider problems of electric machines optimization within a wide range of many variables variation as well as the presence of many calculation constraints in a single-criteria optimization search tasks. Results. A structural model for optimizing electric machines of arbitrary type using Microsoft Azure machine learning technology has been developed. The obtained results, using several optimization methods from the Microsoft Azure database are demonstrated. The advantages of cloud computing and optimization based on remote servers are shown. The results of statistical analysis of the results are given. Originality. Microsoft Azure machine learning technology was used for electrical machines optimization for the first time. Recommendations for modifying standard algorithms, offered by Microsoft Azure are given. Practical value. Significant time reduction and resources spent on the optimization of electrical machines in a wide range of variable variables. Reducing the time to develop optimization algorithms. The possibility of automatic statistical analysis of the results after performing optimization calculations.uk_UA
dc.identifier.citationImplementing of Microsoft Azure machine learning technology for electric machines optimization / V. Pliuhin, M. Sukhonos, M. Pan, O. Petrenko, M. Petrenko // Електротехніка і електромеханіка. — 2019. — № 1. — С. 23-28. — Бібліогр.: 20 назв. — англ.uk_UA
dc.identifier.issn2074-272X
dc.identifier.otherDOI: https://doi.org/10.20998/2074-272X.2019.1.04
dc.identifier.udc629.429.3:621.313
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/159032
dc.language.isoenuk_UA
dc.publisherІнститут технічних проблем магнетизму НАН Україниuk_UA
dc.relation.ispartofЕлектротехніка і електромеханіка
dc.statuspublished earlieruk_UA
dc.subjectЕлектричні машини та апаратиuk_UA
dc.titleImplementing of Microsoft Azure machine learning technology for electric machines optimizationuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-PliuhinENG.pdf
Розмір:
521.06 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: