Second-Order Conformally Equivariant Quantization in Dimension 1|2

dc.contributor.authorMellouli, N.
dc.date.accessioned2019-02-19T17:34:36Z
dc.date.available2019-02-19T17:34:36Z
dc.date.issued2009
dc.description.abstractThis paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula.uk_UA
dc.description.sponsorshipI am grateful to H. Gargoubi and V. Ovsienko for the statement of the problem and constant help. I am also pleased to thank D. Leites for critical reading of this paper and a number of helpful suggestions.uk_UA
dc.identifier.citationSecond-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 17B10; 17B68; 53D55
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149129
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSecond-Order Conformally Equivariant Quantization in Dimension 1|2uk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
111-Mellouli.pdf
Розмір:
225.08 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: