Second-Order Conformally Equivariant Quantization in Dimension 1|2
| dc.contributor.author | Mellouli, N. | |
| dc.date.accessioned | 2019-02-19T17:34:36Z | |
| dc.date.available | 2019-02-19T17:34:36Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula. | uk_UA |
| dc.description.sponsorship | I am grateful to H. Gargoubi and V. Ovsienko for the statement of the problem and constant help. I am also pleased to thank D. Leites for critical reading of this paper and a number of helpful suggestions. | uk_UA |
| dc.identifier.citation | Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2000 Mathematics Subject Classification: 17B10; 17B68; 53D55 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149129 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | Second-Order Conformally Equivariant Quantization in Dimension 1|2 | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 111-Mellouli.pdf
- Розмір:
- 225.08 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: