Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1

dc.contributor.authorMel'nyk, T.A.
dc.date.accessioned2020-06-06T18:07:41Z
dc.date.available2020-06-06T18:07:41Z
dc.date.issued2005
dc.description.abstractThe spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions.uk_UA
dc.identifier.citationAsymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ.uk_UA
dc.identifier.issn0236-0497
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/169156
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofНелинейные граничные задачи
dc.statuspublished earlieruk_UA
dc.titleAsymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1uk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
08-MelnykNEW.pdf
Розмір:
4.78 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: