Results Concerning Almost Complex Structures on the Six-Sphere
| dc.contributor.author | Wilson, S.O. | |
| dc.date.accessioned | 2025-11-24T10:46:47Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | For the standard metric on the six-dimensional sphere, with Levi-Civita connection ∇, we show there is no almost complex structure J such that ∇XJ and ∇JXJ commute for every X, nor is there any integrable J such that ∇JXJ = J∇XJ for every X. The latter statement generalizes a previously known result on the non-existence of integrable orthogonal almost complex structures on the six-sphere. Both statements have refined versions, expressed as intrinsic first-order differential inequalities depending only on J and the metric. The new techniques employed include an almost-complex analogue of the Gauss map, defined for any almost-complex manifold in Euclidean space. | |
| dc.description.sponsorship | I gratefully acknowledge Queens College's sabbatical/fellowship leave program, which provided me with time to conduct some of this research. I thank Arthur Parzygnat for comments on a preliminary version of this paper, and also thank the referees for their suggestions, which have improved this paper. | |
| dc.identifier.citation | Results Concerning Almost Complex Structures on the Six-Sphere / S.O. Wilson // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 12 назв. — англ. | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2018.034 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 53C15; 32Q60; 53A07 | |
| dc.identifier.other | arXiv: 1610.09620 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/209538 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Results Concerning Almost Complex Structures on the Six-Sphere | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 034-Wilson.pdf
- Розмір:
- 412.45 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: