On Free Field Realizations of W(2,2)-Modules
| dc.contributor.author | Adamović, D. | |
| dc.contributor.author | Radobolja, G. | |
| dc.date.accessioned | 2019-02-18T15:11:09Z | |
| dc.date.available | 2019-02-18T15:11:09Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | The aim of the paper is to study modules for the twisted Heisenberg-Virasoro algebra H at level zero as modules for the W(2,2)-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322-4342, arXiv:1405.1707]. We prove that the irreducible highest weight H-module is irreducible as W(2,2)-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg-Virasoro vertex algebra whose kernel is exactly W(2,2) vertex algebra. | uk_UA |
| dc.description.sponsorship | The authors are partially supported by the Croatian Science Foundation under the project 2634 and by the Croatian Scientific Centre of Excellence QuantixLie. | uk_UA |
| dc.identifier.citation | On Free Field Realizations of W(2,2)-Modules / D. Adamović, G. Radobolja // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 20 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 17B69; 17B67; 17B68; 81R10 | |
| dc.identifier.other | DOI:10.3842/SIGMA.2016.113 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/148548 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | On Free Field Realizations of W(2,2)-Modules | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 113-Adamović.pdf
- Розмір:
- 383.77 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: