Эволюционно-фрагментарная модель задачи трассировки

dc.contributor.authorКозин, И.В.
dc.contributor.authorКривцун, Е.В.
dc.contributor.authorПинчук, В.П.
dc.date.accessioned2017-10-05T20:12:24Z
dc.date.available2017-10-05T20:12:24Z
dc.date.issued2015
dc.description.abstractРассматривается один из вариантов задачи трассировки на плоской целочисленной решетке. Показано, что эта задача может быть представлена как задача поиска слов с определенными свойствами над конечным алфавитом. В свою очередь задача поиска оптимальных слов может рассматриваться как задача с фрагментарной структурой. Получена комбинаторная оценка множества допустимых слов, установлена нижняя оценка плотности в задаче поиска оптимальной трассировки с критерием плотности. Построена эволюционно-фрагментарная модель задачи трассировки, для малых размеров получены оптимальные и близкие к оптимальным решения этой задачи.uk_UA
dc.description.abstractРозглянуто один з варіантів задачі трасування на плоскій цілочисловій гратці. Показано, що цю задачу можна сформулювати як задачу пошуку слів з певними властивостями над кінцевим алфавітом. У свою чергу, задача пошуку оптимальних слів може розглядатися як задача з фрагментарною структурою. Отримано комбінаторну оцінку множини допустимих слів, встановлено нижню оцінку щільності в задачі пошуку оптимального трасування з критерієм щільності. Побудовано еволюційно-фрагментарну модель задачі трасування, для малих розмірів отримано оптимальні і близькі до оптимальних розв’язки цієї задачі.uk_UA
dc.description.abstractIn this paper we consider one of the variants of the routing problem on a plane integer lattice. It is shown that this problem can be represented as a problem of searching for words with certain properties over a finite alphabet. In turn, the problem of finding optimal words can be considered as a problem with fragmentary structure. A combinatorial estimate for set of feasible words was derived and the lower bound of the density was established for the problem of finding optimal line density. An evolutionary-fragmentary model of the routing problem is constructed. Optimal and near-optimal solutions are obtained for this problem for small sizes.uk_UA
dc.identifier.citationЭволюционно-фрагментарная модель задачи трассировки / И.В. Козин, Е.В. Кривцун, В.П. Пинчук // Кибернетика и системный анализ. — 2015. — Т. 51, № 3. — С. 125-131. — Бібліогр.: 10 назв. — рос.uk_UA
dc.identifier.issn0023-1274
dc.identifier.udc519.87
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124825
dc.language.isoruuk_UA
dc.publisherІнститут кібернетики ім. В.М. Глушкова НАН Україниuk_UA
dc.relation.ispartofКибернетика и системный анализ
dc.statuspublished earlieruk_UA
dc.subjectСистемный анализuk_UA
dc.titleЭволюционно-фрагментарная модель задачи трассировкиuk_UA
dc.title.alternativeЕволюційно-фрагментарна модель задачі трасування Evolutionary-fragmented model of the routing problemuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
10-Kozin.pdf
Розмір:
470.39 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: