On Certain Wronskians of Multiple Orthogonal Polynomials

dc.contributor.authorZhang, L.
dc.contributor.authorFilipuk, G.
dc.date.accessioned2019-02-09T20:41:46Z
dc.date.available2019-02-09T20:41:46Z
dc.date.issued2014
dc.description.abstractWe consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for multiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.uk_UA
dc.description.sponsorshipWe thank the referees for helpful comments, suggestions, and pointing out the additional references [23, 24, 44, 46]. LZ is partially supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. SHH1411007) and by Grant SGST 12DZ 2272800 from Fudan University. GF is supported by the MNiSzW Iuventus Plus grant Nr 0124/IP3/2011/71.uk_UA
dc.identifier.citationOn Certain Wronskians of Multiple Orthogonal Polynomials/ L. Zhang, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 60 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 05E35; 11C20; 12D10; 26D05; 41A50
dc.identifier.otherDOI:10.3842/SIGMA.2014.103
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146536
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOn Certain Wronskians of Multiple Orthogonal Polynomialsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
14-Zhang.pdf
Розмір:
482.86 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: