Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
| dc.contributor.author | Chernousova, Zh.T. | |
| dc.contributor.author | Dokuchaev, M.A. | |
| dc.contributor.author | Khibina, M.A. | |
| dc.contributor.author | Kirichenko, V.V. | |
| dc.contributor.author | Miroshnichenko, S.G. | |
| dc.contributor.author | Zhuravlev, V.N. | |
| dc.date.accessioned | 2019-06-16T15:30:26Z | |
| dc.date.available | 2019-06-16T15:30:26Z | |
| dc.date.issued | 2002 | |
| dc.description.abstract | We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect ring A as the maximal real eigen-value of its adjacency matrix. A tiled order Λ is integral if in Λ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, in Λ = 1 if and only if Λ is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced (0, 1)-order is Gorenstein if and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where w(Λ) is a width of Λ. | uk_UA |
| dc.identifier.citation | Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/155280 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 03-Chernousova.pdf
- Розмір:
- 37.68 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: