Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I

dc.contributor.authorChernousova, Zh.T.
dc.contributor.authorDokuchaev, M.A.
dc.contributor.authorKhibina, M.A.
dc.contributor.authorKirichenko, V.V.
dc.contributor.authorMiroshnichenko, S.G.
dc.contributor.authorZhuravlev, V.N.
dc.date.accessioned2019-06-16T15:30:26Z
dc.date.available2019-06-16T15:30:26Z
dc.date.issued2002
dc.description.abstractWe prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect ring A as the maximal real eigen-value of its adjacency matrix. A tiled order Λ is integral if in Λ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, in Λ = 1 if and only if Λ is hereditary. We give an example of a non-integral Gorenstein tiled order. We prove that a reduced (0, 1)-order is Gorenstein if and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where w(Λ) is a width of Λ.uk_UA
dc.identifier.citationTiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/155280
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleTiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. Iuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Chernousova.pdf
Розмір:
37.68 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: