From Polygons to Ultradiscrete Painlevé Equations

dc.contributor.authorOrmerod, C.M.
dc.contributor.authorYamada, Y.
dc.date.accessioned2019-02-13T17:08:06Z
dc.date.available2019-02-13T17:08:06Z
dc.date.issued2015
dc.description.abstractThe rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons with three to eleven sides whose groups of piecewise linear transformations coincide with the Bäcklund transformations and the evolution equations for the ultradiscrete Painlevé equations.uk_UA
dc.description.sponsorshipChristopher M. Ormerod would like to acknowledge Eric Rains for his helpful discussions. Y. Yamada is supported by JSPS KAKENHI Grant Number 26287018.uk_UA
dc.identifier.citationFrom Polygons to Ultradiscrete Painlevé Equations / C.M. Ormerod, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 54 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14T05; 14H70; 39A13
dc.identifier.otherDOI:10.3842/SIGMA.2015.056
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147126
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleFrom Polygons to Ultradiscrete Painlevé Equationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
056-Ormerod.pdf
Розмір:
580.19 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: