Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight

dc.contributor.authorConway, T.O.
dc.contributor.authorDeift, P.
dc.date.accessioned2025-11-24T10:11:46Z
dc.date.issued2018
dc.description.abstractIn this paper, we compute the asymptotic behavior of the recurrence coefficients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log(2k/(1 - x))dx on (-1,1), with k > 1, and verify a conjecture of A. Magnus for these coefficients. We use Riemann-Hilbert/steepest-descent methods, but not in the standard way, as there is no known parametrix for the Riemann-Hilbert problem in a neighborhood of the logarithmic singularity at x = 1.
dc.description.sponsorshipThe work of the second author was supported in part by DMS Grant # 1300965. The authors gratefully acknowledge the comments and suggestions about the result in this paper by Arno Kuijlaars and Andrei Martinez-Finkelshtein.
dc.identifier.citationAsymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight / T.O. Conway, P. Deift // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.056
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33C47; 34E05; 34M50
dc.identifier.otherarXiv: 1711.01590
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209516
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleAsymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
056-Conway.pdf
Розмір:
755.21 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: