On the φ-asymptotic behaviour of solutions of stochastic differential equations

dc.contributor.authorBuldygin, V.V.
dc.contributor.authorKlesov, O.I.
dc.contributor.authorSteinebach, J.G.
dc.contributor.authorTymoshenko, O.A.
dc.date.accessioned2009-11-25T11:00:57Z
dc.date.available2009-11-25T11:00:57Z
dc.date.issued2008
dc.description.abstractIn this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and φ, under which φ(X(•)) can be approximated a.s. by φ(μ(•), where μ is the solution of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application of these results we discuss the problem of φ-asymptotic equivalence for solutions of stochastic differential equations.en_US
dc.description.sponsorshipThis work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-2 and 436 UKR 113/68/0-1en_US
dc.identifier.citationOn the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ.en_US
dc.identifier.issn0321-3900
dc.identifier.udc519.21
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/4532
dc.language.isoenen_US
dc.publisherІнститут математики НАН Україниen_US
dc.statuspublished earlieren_US
dc.titleOn the φ-asymptotic behaviour of solutions of stochastic differential equationsen_US
dc.typeArticleen_US

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
2008_14_1_3.pdf
Розмір:
283.38 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
1.82 KB
Формат:
Item-specific license agreed upon to submission
Опис: