On the φ-asymptotic behaviour of solutions of stochastic differential equations
dc.contributor.author | Buldygin, V.V. | |
dc.contributor.author | Klesov, O.I. | |
dc.contributor.author | Steinebach, J.G. | |
dc.contributor.author | Tymoshenko, O.A. | |
dc.date.accessioned | 2009-11-25T11:00:57Z | |
dc.date.available | 2009-11-25T11:00:57Z | |
dc.date.issued | 2008 | |
dc.description.abstract | In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and φ, under which φ(X(•)) can be approximated a.s. by φ(μ(•), where μ is the solution of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application of these results we discuss the problem of φ-asymptotic equivalence for solutions of stochastic differential equations. | en_US |
dc.description.sponsorship | This work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-2 and 436 UKR 113/68/0-1 | en_US |
dc.identifier.citation | On the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ. | en_US |
dc.identifier.issn | 0321-3900 | |
dc.identifier.udc | 519.21 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/4532 | |
dc.language.iso | en | en_US |
dc.publisher | Інститут математики НАН України | en_US |
dc.status | published earlier | en_US |
dc.title | On the φ-asymptotic behaviour of solutions of stochastic differential equations | en_US |
dc.type | Article | en_US |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 2008_14_1_3.pdf
- Розмір:
- 283.38 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 1.82 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: