Twisted de Rham Complex on Line and Singular Vectors in sl₂ˆ Verma Modules

dc.contributor.authorSlinkin, A.
dc.contributor.authorVarchenko, A.
dc.date.accessioned2025-12-04T13:00:07Z
dc.date.issued2019
dc.description.abstractWe consider two complexes. The first complex is the twisted de Rham complex of scalar meromorphic differential forms on the projective line, holomorphic on the complement to a finite set of points. The second complex is the chain complex of the Lie algebra of sl₂-valued algebraic functions on the same complement, with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra sl₂ˆ. In [Schechtman V., Varchenko A., Mosc. Math. J. 17 (2017), 787-802] a construction of a monomorphism of the first complex to the second was suggested, and it was indicated that under this monomorphism, the existence of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the relations between the cohomology classes of the de Rham complex. In this paper, we prove these results.
dc.description.sponsorshipThe authors thank V. Schechtman for useful discussions. The second author was supported in part by NSF grant DMS-1665239.
dc.identifier.citationTwisted de Rham Complex on Line and Singular Vectors in sl₂ˆ Verma Modules / A. Slinkin, A. Varchenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 9 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.075
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 17B56; 17B67; 33C80
dc.identifier.otherarXiv: 1812.09791
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210220
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleTwisted de Rham Complex on Line and Singular Vectors in sl₂ˆ Verma Modules
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
075-Slinkin.pdf
Розмір:
478.12 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: