Generalized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory

dc.contributor.authorAcosta-Humánez, M.F.
dc.contributor.authorAcosta-Humánez, P.B.
dc.contributor.authorTuirán, E.
dc.date.accessioned2025-11-27T14:57:39Z
dc.date.issued2018
dc.description.abstractIn this paper, we start with proving that the Schrödinger equation (SE) with the classical 12−6 Lennard-Jones (L-J) potential is nonintegrable in the sense of the differential Galois theory (DGT), for any value of energy; i.e., there are no solutions in closed form for such a differential equation. We study the 10−6 potential through DGT and SUSYQM, being one of the two partner potentials built with a superpotential of the form w(r)∝1/r⁵. We also find that it is integrable in the sense of DGT for zero energy. A first analysis of the applicability and physical consequences of the model is carried out in terms of the so-called De Boer principle of corresponding states. A comparison of the second virial coefficient B(T) for both potentials shows good agreement for low temperatures. As a consequence of these results, we propose the 10−6 potential as an integrable alternative to be applied in further studies instead of the original 12−6 L-J potential. Finally, we study through DGT and SUSYQM the integrability of the SE with a generalized (2ν−2)−ν L-J potential. This analysis does not include the study of square integrable wave functions, excited states, and energies different than zero for the generalization of L-J potentials.
dc.description.sponsorshipP. Acosta-Humánez thanks to Universidad Simón Bolívar, Research Project Métodos Algebraicos y Combinatorios en Sistemas Dinámicos y Física Matemática. He also acknowledges and thanks the support of COLCIENCIAS through grant number FP44842-013-2018 of the Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación. E.T. wishes to thank the German Service of Academic Exchange (DAAD) for financial support, and Professor M. Reuter at the Institute of Physics in Uni-Mainz for stimulating discussions about this work. Finally, the authors thank the anonymous referees for their valuable comments and suggestions.
dc.identifier.citationGeneralized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory / M.F. Acosta-Humánez, P.B. Acosta-Humánez, E. Tuirán // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 51 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.099
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 12H05; 81V55; 81Q05
dc.identifier.otherarXiv: 1803.01247
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209858
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleGeneralized Lennard-Jones Potentials, SUSYQM and Differential Galois Theory
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
099-Acosta.pdf
Розмір:
534.09 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: