A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)

dc.contributor.authorHolweck, F.
dc.contributor.authorSaniga, M.
dc.contributor.authorLévay, P.
dc.date.accessioned2019-02-11T16:16:41Z
dc.date.available2019-02-11T16:16:41Z
dc.date.issued2014
dc.description.abstractEmploying the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the n-qubit Pauli group and a certain subset of elements of the 2ⁿ⁻¹-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases n=3 (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and n=4 are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space PG(2n−1,2) of the 2ⁿ⁻¹-qubit Pauli group in terms of G-orbits, where G≡SL(2,2)×SL(2,2)×⋯×SL(2,2)⋊Sn, to decompose π(LGr(n,2n)) into non-equivalent orbits. This leads to a partition of LGr(n,2n) into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups.uk_UA
dc.description.sponsorshipThis work began while two of the authors (M.S. and P.L.) were fellows of the “Research in Pairs” Program of the Mathematisches Forschungsinstitut Oberwolfach (Oberwolfach, Germany), in the period from 24 February to 16 March, 2013. It was also partially supported by the PEPS ICQ 2013 project CoGIT of the CNRS (F.H. and M.S.), the VEGA Grant Agency, grant No. 2/0003/13 (M.S.) and by the MTA-BME Condensed Matter Physics Research Group, grant No. 04119 (P.L.).uk_UA
dc.identifier.citationA Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 05B25; 51E20; 81P99
dc.identifier.otherDOI:10.3842/SIGMA.2014.041
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146814
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)uk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
76-Holweck.pdf
Розмір:
459.17 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: