Semiclassical Trans-Series from the Perturbative Hopf-Algebraic Dyson-Schwinger Equations: 𝜙³ QFT in 6 Dimensions

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We analyze the asymptotically free massless scalar 𝜙³ quantum field theory in 6 dimensions, using resurgent asymptotic analysis to find the trans-series solutions which yield the non-perturbative completion of the divergent perturbative solutions to the Kreimer-Connes Hopf-algebraic Dyson-Schwinger equations for the anomalous dimension. This scalar conformal field theory is asymptotically free and has a real Lipatov instanton. In the Hopf-algebraic approach, we find a trans-series having an intricate Borel singularity structure, with three distinct but resonant non-perturbative terms, each repeated in an infinite series. These expansions are in terms of the renormalized coupling. The resonant structure leads to powers of logarithmic terms at higher levels of the trans-series, analogous to logarithmic terms arising from interactions between instantons and anti-instantons, but arising from a purely perturbative formalism rather than from a semi-classical analysis.

Опис

Теми

Цитування

Semiclassical Trans-Series from the Perturbative Hopf-Algebraic Dyson-Schwinger Equations: 𝜙³ QFT in 6 Dimensions. Michael Borinsky, Gerald V. Dunne and Max Meynig. SIGMA 17 (2021), 087, 26 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced