Orthogonal Basic Hypergeometric Laurent Polynomials

dc.contributor.authorMourad E.H. Ismail
dc.contributor.authorStanton, D.
dc.date.accessioned2019-02-18T17:43:17Z
dc.date.available2019-02-18T17:43:17Z
dc.date.issued2012
dc.description.abstractThe Askey-Wilson polynomials are orthogonal polynomials in x=cosθ, which are given as a terminating ₄∅₃ basic hypergeometric series. The non-symmetric Askey-Wilson polynomials are Laurent polynomials in z=eiθ, which are given as a sum of two terminating ₄∅₃'s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single ₄∅₃'s which are Laurent polynomials in z are given, which imply the non-symmetric Askey-Wilson biorthogonality. These results include discrete orthogonality relations. They can be considered as a classical analytic study of the results for non-symmetric Askey-Wilson polynomials which were previously obtained by affine Hecke algebra techniques.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html. The research of Mourad E.H. Ismail is partially supported by Research Grants Council of Hong Kong under contracts #101410 and #101411 and by King Saud University, Riyadh through grant DSFP/MATH 01.uk_UA
dc.identifier.citationOrthogonal Basic Hypergeometric Laurent Polynomials / Mourad E.H. Ismail, D. Stanton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33D45
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.092
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148664
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOrthogonal Basic Hypergeometric Laurent Polynomialsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
092-Mourad.pdf
Розмір:
436.83 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: