Cluster Configuration Spaces of Finite Type

dc.contributor.authorArkani-Hamed, Nima
dc.contributor.authorHe, Song
dc.contributor.authorLam, Thomas
dc.date.accessioned2026-01-02T08:32:52Z
dc.date.issued2021
dc.description.abstractFor each Dynkin diagram 𝐷, we define a ''cluster configuration space'' ℳ𝐷 and a partial compactification ℳ˜𝐷. For 𝐷 = 𝐴ₙ₋₃, we have ℳ𝐴ₙ₋₃ = ℳ₀,ₙ, the configuration space of 𝑛 points on ℙ¹, and the partial compactification ℳ˜𝐴ₙ₋₃ was studied in this case by Brown. The space M˜𝐷 is a smooth affine algebraic variety with a stratification in bijection with the faces of the Chapoton-Fomin-Zelevinsky generalized associahedron. The regular functions on ℳ˜𝐷 are generated by coordinates uγ, in bijection with the cluster variables of type 𝐷, and the relations are described completely in terms of the compatibility degree function of the cluster algebra. As an application, we define and study cluster algebra analogues of tree-level open string amplitudes.
dc.description.sponsorshipWe thank Mark Spradlin and Hugh Thomas for many discussions related to this work and for closely related collaborations. We thank the anonymous referees for a number of corrections and helpful suggestions to the exposition. T.L. was supported by NSF DMS-1464693, NSF DMS1953852, and by a von Neumann Fellowship from the Institute for Advanced Study. N.A-H. was supported by DOE grant DE-SC0009988. S.H. was supported in part by the National Natural Science Foundation of China under Grants No. 11935013, 11947301, 12047502, 12047503.
dc.identifier.citationCluster Configuration Spaces of Finite Type. Nima Arkani-Hamed, Song He and Thomas Lam. SIGMA 17 (2021), 092, 41 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.092
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 05E14; 13F60; 14N99; 81T30
dc.identifier.otherarXiv:2005.11419
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211435
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleCluster Configuration Spaces of Finite Type
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
092-Arkani.pdf
Розмір:
737.78 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: