Exact Free Energies of Statistical Systems on Random Networks

dc.contributor.authorSasakura, N.
dc.contributor.authorSato, Y.
dc.date.accessioned2019-02-10T10:03:09Z
dc.date.available2019-02-10T10:03:09Z
dc.date.issued2014
dc.description.abstractStatistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly evaluated in the thermodynamic limit by the Laplace method, and that the exact expressions can in principle be obtained by solving polynomial equations for mean fields. As demonstrations, we apply our method to the ferromagnetic Ising models on random networks. The free energy of the ferromagnetic Ising model on random networks with trivalent vertices is shown to exactly reproduce that of the ferromagnetic Ising model on the Bethe lattice. We also consider the cases with heterogeneity with mixtures of orders of vertices, and derive the known formula of the Curie temperature.uk_UA
dc.description.sponsorshipWe would like to thank Des Johnston for some communications.uk_UA
dc.identifier.citationExact Free Energies of Statistical Systems on Random Networks / N. Sasakura, Y. Sato // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 12 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 05C82; 37A60; 46N55; 82B20; 81U15; 83C15
dc.identifier.otherDOI:10.3842/SIGMA.2014.087
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146613
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleExact Free Energies of Statistical Systems on Random Networksuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
30-Sasakura.pdf
Розмір:
280.4 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: