Exact Free Energies of Statistical Systems on Random Networks
dc.contributor.author | Sasakura, N. | |
dc.contributor.author | Sato, Y. | |
dc.date.accessioned | 2019-02-10T10:03:09Z | |
dc.date.available | 2019-02-10T10:03:09Z | |
dc.date.issued | 2014 | |
dc.description.abstract | Statistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly evaluated in the thermodynamic limit by the Laplace method, and that the exact expressions can in principle be obtained by solving polynomial equations for mean fields. As demonstrations, we apply our method to the ferromagnetic Ising models on random networks. The free energy of the ferromagnetic Ising model on random networks with trivalent vertices is shown to exactly reproduce that of the ferromagnetic Ising model on the Bethe lattice. We also consider the cases with heterogeneity with mixtures of orders of vertices, and derive the known formula of the Curie temperature. | uk_UA |
dc.description.sponsorship | We would like to thank Des Johnston for some communications. | uk_UA |
dc.identifier.citation | Exact Free Energies of Statistical Systems on Random Networks / N. Sasakura, Y. Sato // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 12 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 05C82; 37A60; 46N55; 82B20; 81U15; 83C15 | |
dc.identifier.other | DOI:10.3842/SIGMA.2014.087 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/146613 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Exact Free Energies of Statistical Systems on Random Networks | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 30-Sasakura.pdf
- Розмір:
- 280.4 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: