Isomorphism of Intransitive Linear Lie Equations
| dc.contributor.author | Veloso, Jose Miguel Martins | |
| dc.date.accessioned | 2019-02-19T17:25:25Z | |
| dc.date.available | 2019-02-19T17:25:25Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan. | uk_UA |
| dc.description.sponsorship | This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. I would like to thank the referees for the several suggestions to improve this paper. | uk_UA |
| dc.identifier.citation | Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2000 Mathematics Subject Classification: 58H05; 58H10 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149105 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | Isomorphism of Intransitive Linear Lie Equations | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 103-Jose Miguel Martins Veloso.pdf
- Розмір:
- 422.89 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: