M-Theory with Framed Corners and Tertiary Index Invariants

dc.contributor.authorSati, H.
dc.date.accessioned2019-02-11T16:34:05Z
dc.date.available2019-02-11T16:34:05Z
dc.date.issued2014
dc.description.abstractThe study of the partition function in M-theory involves the use of index theory on a twelve-dimensional bounding manifold. In eleven dimensions, viewed as a boundary, this is given by secondary index invariants such as the Atiyah-Patodi-Singer eta-invariant, the Chern-Simons invariant, or the Adams e-invariant. If the eleven-dimensional manifold itself has a boundary, the resulting ten-dimensional manifold can be viewed as a codimension two corner. The partition function in this context has been studied by the author in relation to index theory for manifolds with corners, essentially on the product of two intervals. In this paper, we focus on the case of framed manifolds (which are automatically Spin) and provide a formulation of the refined partition function using a tertiary index invariant, namely the f-invariant introduced by Laures within elliptic cohomology. We describe the context globally, connecting the various spaces and theories around M-theory, and providing a physical realization and interpretation of some ingredients appearing in the constructions due to Bunke-Naumann and Bodecker. The formulation leads to a natural interpretation of anomalies using corners and uncovers some resulting constraints in the heterotic corner. The analysis for type IIA leads to a physical identification of various components of eta-forms appearing in the formula for the phase of the partition function.uk_UA
dc.description.sponsorshipThe author thanks Ulrich Bunke for explaining his work and Niranjan Ramachandran for discussions on divided congruences. This research is supported by NSF Grant PHY-1102218. The author is indebted to the anonymous referees for many corrections and helpful suggestions.uk_UA
dc.identifier.citationM-Theory with Framed Corners and Tertiary Index Invariants / H. Sati // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 87 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 81T50; 55N20; 58J26; 58J22; 58J28; 81T30
dc.identifier.otherDOI:10.3842/SIGMA.2014.024
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146824
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleM-Theory with Framed Corners and Tertiary Index Invariantsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
93-Sati.pdf
Розмір:
598.61 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: