A Matrix Baker-Akhiezer Function Associated with the Maxwell-Bloch Equations and their Finite-Gap Solutions

dc.contributor.authorKotlyarov, V.P.
dc.date.accessioned2025-11-26T11:26:16Z
dc.date.issued2018
dc.description.abstractThe Baker-Akhiezer (BA) function theory was successfully developed in the mid-1970s. This theory brought very interesting and important results in the spectral theory of almost periodic operators and the theory of completely integrable nonlinear equations, such as the Korteweg-de Vries equation, the nonlinear Schrödinger equation, the sine-Gordon equation, Kadomtsev-Petviashvili equation. Subsequently, the theory was reproduced for the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchies. However, extensions of the Baker-Akhiezer function for the Maxwell-Bloch (MB) system or for the Karpman-Kaup equations, which contain prescribed weight functions characterizing inhomogeneous broadening of the main frequency, are unknown. The main goal of the paper is to give a such of extension associated with the Maxwell-Bloch equations. Using different Riemann-Hilbert problems posed on the complex plane with a finite number of cuts, we propose such a matrix function that has a unit determinant and takes an explicit form through Cauchy integrals, hyperelliptic integrals, and theta functions. The matrix BA function solves the AKNS equations (the Lax pair for the MB system) and generates a quasi-periodic finite-gap solution to the Maxwell-Bloch equations. The suggested function will be useful in the study of the long-time asymptotic behavior of solutions of different initial-boundary value problems for the MB equations using the Deift-Zhou method of steepest descent and for an investigation of rogue waves of the Maxwell-Bloch equations.
dc.description.sponsorshipThe author thanks the referees for careful reading of the manuscript and valuable recommendations.
dc.identifier.citationA Matrix Baker-Akhiezer Function Associated with the Maxwell-Bloch Equations and their Finite-Gap Solutions / V.P. Kotlyarov // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 64 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.082
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 34L25; 34M50; 35F31; 35Q15; 35Q51
dc.identifier.otherarXiv: 1802.01622
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209768
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleA Matrix Baker-Akhiezer Function Associated with the Maxwell-Bloch Equations and their Finite-Gap Solutions
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
082-Kotlyarov.pdf
Розмір:
526.8 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: