Bispectrality of the Complementary Bannai-Ito Polynomials
dc.contributor.author | Genest, V.X. | |
dc.contributor.author | Vinet, L. | |
dc.contributor.author | Zhedanov, A. | |
dc.date.accessioned | 2019-02-19T19:01:13Z | |
dc.date.available | 2019-02-19T19:01:13Z | |
dc.date.issued | 2013 | |
dc.description.abstract | A one-parameter family of operators that have the complementary Bannai-Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai-Ito polynomials and also correspond to a q→−1 limit of the Askey-Wilson polynomials. The eigenvalue equations for the CBI polynomials are found to involve second order Dunkl shift operators with reflections and exhibit quadratic spectra. The algebra associated to the CBI polynomials is given and seen to be a deformation of the Askey-Wilson algebra with an involution. The relation between the CBI polynomials and the recently discovered dual −1 Hahn and para-Krawtchouk polynomials, as well as their relation with the symmetric Hahn polynomials, is also discussed. | uk_UA |
dc.description.sponsorship | V.X.G. holds a scholarship from Fonds de recherche qu´eb´ecois – nature et technologies (FRQNT). The research of L.V. is supported in part by the Natural Science and Engineering Council of Canada (NSERC). A.Z. would like to thank the Centre de Recherches Math´ematiques (CRM) for its hospitality | uk_UA |
dc.identifier.citation | Bispectrality of the Complementary Bannai-Ito Polynomials / V.X. Genest, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 33C02; 16G02 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2013.018 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149225 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Bispectrality of the Complementary Bannai-Ito Polynomials | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 018-Genest.pdf
- Розмір:
- 418.41 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: