Lagrangian Grassmannians and Spinor Varieties in Characteristic Two

dc.contributor.authorvan Geemen, B.
dc.contributor.authorMarrani, A.
dc.date.accessioned2025-12-04T13:04:22Z
dc.date.issued2019
dc.description.abstractThe vector space of symmetric matrices of size n has a natural map to a projective space of dimension 2ⁿ −1 given by the principal minors. This map extends to the Lagrangian Grassmannian LG(n, 2n), and over the complex numbers, the image is defined, as a set, by quartic equations. In case the characteristic of the field is two, it was observed that, for n=3,4, the image is defined by quadrics. In this paper, we show that this is the case for any n and that, moreover, the image is the spinor variety associated to Spin(2n+1). Since some of the motivating examples are of interest in supergravity and in the black-hole/qubit correspondence, we conclude with a brief examination of other cases related to integral Freudenthal triple systems over integral cubic Jordan algebras.
dc.description.sponsorshipBvG would like to thank L. Oeding and W. van der Kallen for helpful correspondence and discussions. We are indebted to the referees of this paper for comments and suggestions for improvements.
dc.identifier.citationLagrangian Grassmannians and Spinor Varieties in Characteristic Two / B. van Geemen, A. Marrani // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.064
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14M17; 20G15; 51E25
dc.identifier.otherarXiv: 1903.01228
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210231
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleLagrangian Grassmannians and Spinor Varieties in Characteristic Two
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
064-Geemen.pdf
Розмір:
473.43 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: