PRV property and the asymptotic behaviour of solutions of stochastic differential equations
dc.contributor.author | Buldygin, V.V. | |
dc.contributor.author | Klesov, O.I. | |
dc.contributor.author | Steinebach, J.G. | |
dc.date.accessioned | 2009-11-09T15:30:54Z | |
dc.date.available | 2009-11-09T15:30:54Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We consider the a.s. asymptotic behaviour of a solution of the stochastic differential equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.) and σ(.) are positive continuous functions and W(.) is the standard Wiener process. By applying the theory of PRV and PMPV functions, we find the conditions on g(.) and σ(.), under which X(.) resp. f(X(.)) may be approximated a.s. on {X(t)→∞} by μ(.) resp. f(μ(.)), where μ( ) is a solution of the deterministic differential equation dμ(t) = g(μ(t))dt with μ(0) = b, and f(.) is a strictly increasing function. Moreover, we consider the asymptotic behaviour of generalized renewal processes connected with this SDE. | en_US |
dc.description.sponsorship | This work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-3 and 436 UKR 113/68/0-1. | en_US |
dc.identifier.citation | PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ. | en_US |
dc.identifier.issn | 0321-3900 | |
dc.identifier.udc | 519.21 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/4424 | |
dc.language.iso | en | en_US |
dc.publisher | Інститут математики НАН України | en_US |
dc.status | published earlier | en_US |
dc.title | PRV property and the asymptotic behaviour of solutions of stochastic differential equations | en_US |
dc.type | Article | en_US |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 2005_11_3-4_4.pdf
- Розмір:
- 214.32 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 1.82 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: