Levi-Civita's Theorem for Noncommutative Tori
dc.contributor.author | Rosenberg, J. | |
dc.date.accessioned | 2019-02-21T07:21:13Z | |
dc.date.available | 2019-02-21T07:21:13Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. This research was supported by NSF grant DMS-1206159. The author thanks the referees and the participants at the Fields Institute Focus Program for several interesting comments and discussions. I would like to thank Joakim Arnlind for pointing out a mistake in the original formulation of Proposition 3.4 | uk_UA |
dc.identifier.citation | Levi-Civita's Theorem for Noncommutative Tori / L. Rosenberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 11 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 46L87; 58B34; 46L08; 46L08 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2013.071 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149363 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Levi-Civita's Theorem for Noncommutative Tori | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 071-Rosenberg.pdf
- Розмір:
- 333.75 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: