Discrete Fourier Analysis and Chebyshev Polynomials with G₂ Group

dc.contributor.authorLi, H.
dc.contributor.authorSun, J.
dc.contributor.authorXu, Y.
dc.date.accessioned2019-02-18T12:42:41Z
dc.date.available2019-02-18T12:42:41Z
dc.date.issued2012
dc.description.abstractThe discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G₂, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.uk_UA
dc.description.sponsorshipThe work of the first author was partially supported by NSFC Grants 10971212 and 91130014.The work of the second author was partially supported by NSFC Grant 60970089. The work of the third author was supported in part by NSF Grant DMS-110 6113 and a grant from the Simons Foundation (# 209057 to Yuan Xu).uk_UA
dc.identifier.citationDiscrete Fourier Analysis and Chebyshev Polynomials with G₂ Group / H. Li, J. Sun, Y. Xu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 41A05; 41A10
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2012.067
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148448
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleDiscrete Fourier Analysis and Chebyshev Polynomials with G₂ Groupuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
067-Li.pdf
Розмір:
813.05 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: