Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP(2𝑗) and Multi-Species IRW
| dc.contributor.author | Zhou, Zhengye | |
| dc.date.accessioned | 2026-01-02T08:27:24Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | We obtain orthogonal polynomial self-duality functions for the multi-species version of the symmetric exclusion process (SEP(2𝑗)) and the independent random walker process (IRW) on a finite undirected graph. In each process, we have 𝑛 > 1 species of particles. In addition, we allow up to 2𝑗 particles to occupy each site in the multi-species SEP(2𝑗). The duality functions for the multi-species SEP(2𝑗) and the multi-species IRW come from unitary intertwiners between different ∗-representations of the special linear Lie algebra 𝔰𝔩ₙ₊₁ and the Heisenberg Lie algebra 𝔥ₙ, respectively. The analysis leads to multivariate Krawtchouk polynomials as orthogonal duality functions for the multi-species SEP(2𝑗) and homogeneous products of Charlier polynomials as orthogonal duality functions for the multi-species IRW. | |
| dc.description.sponsorship | The author is very grateful to Jeffrey Kuan and anonymous referees for helpful discussions and insightful comments. | |
| dc.identifier.citation | Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP(2𝑗) and Multi-Species IRW. Zhengye Zhou. SIGMA 17 (2021), 113, 11 pages | |
| dc.identifier.doi | https://doi.org/10.3842/SIGMA.2021.113 | |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2020 Mathematics Subject Classification: 60K35 | |
| dc.identifier.other | arXiv:2110.07042 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/211414 | |
| dc.language.iso | en | |
| dc.publisher | Інститут математики НАН України | |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | |
| dc.title | Orthogonal Polynomial Stochastic Duality Functions for Multi-Species SEP(2𝑗) and Multi-Species IRW | |
| dc.type | Article |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: