О модифицированном сильном двоичном интеграле и производной

dc.contributor.authorГолубов, Б.И.
dc.date.accessioned2020-02-07T21:41:48Z
dc.date.available2020-02-07T21:41:48Z
dc.date.issued2002
dc.description.abstractДля функцій f∈L(R₊) визначено модифікований сильний двійковий інтеграл J(f)∈L(R₊) та модифіковану сильну двійкову похідну D(f)∈L(R₊). Отримано необхідну та достатню умову існування модифікованої о сильного двійкового інтеграла J(f) . За умови ∫R₊f(x)dx=0 доведено рівності J(D(f))=f та D(J(f))=f. Знайдено зліченну множину власних функцій операторів J та D. Доведено, що лінійна оболонка L цієї множини є щільною у двійковому просторі Харді H(R₊). Для функцій f∈H(R₊) означено модифікований рівномірний двійковий інтеграл J(f)∈L∞(R₊).uk_UA
dc.description.abstractFor functions f ∈ L(R₊), we define a modified strong dyadic integral J(f) ∈ L(R₊) and a modified strong dyadic derivative D(f) ∈ L(R₊). We establish a necessary and sufficient condition for the existence of the modified strong dyadic integral J(f). Under the condition ∫R₊f(x)dx = 0, we prove the equalities J(D(f)) = f and D(J(f)) = f. We find a countable set of eigenfunctions of the operators J and D. We prove that the linear span L of this set is dense in the dyadic Hardy space H(R₊). For the functions f ∈ H(R₊), we define a modified uniform dyadic integral J(f) ∈ L ∞(R₊).uk_UA
dc.identifier.citationО модифицированном сильном двоичном интеграле и производной / Б.И. Голубов // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 628–638. — Бібліогр.: 15 назв. — рос.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc517.5
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/164034
dc.language.isoruuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectСтаттіuk_UA
dc.titleО модифицированном сильном двоичном интеграле и производнойuk_UA
dc.title.alternativeOn Modified Strong Dyadic Integral and Derivativeuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Golubov.pdf
Розмір:
1.68 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: