Симплектичний метод побудови ергодичних мір на інваріантних підмноговидах неавтономних гамільтонових систем: лагранжеві многовиди, їх структура та гомології Мазера

dc.contributor.authorПрикарпатський, Я.А.
dc.date.accessioned2020-02-11T20:54:36Z
dc.date.available2020-02-11T20:54:36Z
dc.date.issued2006
dc.description.abstractРозвивається новий підхід до вивчення властивостей ергодичних Mip для неавтономних періодичних гамільтонових потоків на симплектичних многовидах, які використовуються в багатьох задачах механіки та математичної фізики. ґрунтуючись на результатах Дж. Мазера про гомології інваріантних ймовірнісних мір, що мінімізують деякі лагранжеві функціонали, а також на симплектичній теорії, розвиненій А. Флоером та іншими для дослідження симплектичних дій і трансверсальних перетинів лагранжевих многовидів, запропоновано аналог β-функції типу Мазера для вивчення ергодичних мір, асоційованих з неавтономними гамільтоновими системами на слабко точних симплектичних многовидах. Деякі результати про стійкі та нестійкі многовиди до гіперболічних інваріантних множин, що застосовуються в теорії адіабатичних інваріантів повільно збурених інтегровних гамільтонових систем, встановлено в рамках еліптичних методів Громова - Саламона - Зендера в симплектичній геометрії.uk_UA
dc.description.abstractWe develop a new approach to the study of properties of ergodic measures for nonautonomous periodic Hamiltonian flows on symplectic manifolds, which are used in many problems of mechanics and mathematical physics. Using Mather’s results on homologies of invariant probability measures that minimize some Lagrangian functionals and the symplectic theory developed by Floer and others for the investigation of symplectic actions and transversal intersections of Lagrangian manifolds, we propose an analog of a Mather-type ?-function for the study of ergodic measures associated with nonautonomous Hamiltonian systems on weakly exact symplectic manifolds. Within the framework of the Gromov-Salamon-Zehnder elliptic methods in symplectic geometry, we establish some results on stable and unstable manifolds for hyperbolic invariant sets, which are used in the theory of adiabatic invariants of slowly perturbed integrable Hamiltonian systems.uk_UA
dc.description.sponsorshipЧастково пiдтримана грантом AGH (Польща).uk_UA
dc.identifier.citationСимплектичний метод побудови ергодичних мір на інваріантних підмноговидах неавтономних гамільтонових систем: лагранжеві многовиди, їх структура та гомології Мазера / Я.А. Прикарпатський // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 675–691. — Бібліогр.: 21 назв. — укр.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc517.9
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/165123
dc.language.isoukuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectСтаттіuk_UA
dc.titleСимплектичний метод побудови ергодичних мір на інваріантних підмноговидах неавтономних гамільтонових систем: лагранжеві многовиди, їх структура та гомології Мазераuk_UA
dc.title.alternativeSymplectic method for the construction of ergodic measures on invariant submanifolds of nonautonomous hamiltonian systems: Lagrangian manifolds, their structure, and mather homologiesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
09-Prykarpatsky.pdf
Розмір:
268.56 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: