A simplified proof of the reduction point crossing sign formula for Verma modules
| dc.contributor.author | Denis, M.St. | |
| dc.contributor.author | Yee, W.L. | |
| dc.date.accessioned | 2023-03-02T19:17:03Z | |
| dc.date.available | 2023-03-02T19:17:03Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | The Unitary Dual Problem is one of the most important open problems in mathematics: classify the irreducible unitary representations of a group. That is, classify all irreducible representations admitting a definite invariant Hermitian form. Signatures of invariant Hermitian forms on Verma modules are important to finding the unitary dual of a real reductive Lie group. By a philosophy of Vogan introduced in [Vog84], signatures of invariant Hermitian forms on irreducible Verma modules may be computed by varying the highest weight and tracking how signatures change at reducibility points (see [Yee05]). At each reducibility point there is a sign ε governing how the signature changes. A formula for ε was first determined in [Yee05] and simplified in [Yee19]. The proof of the simplification was complicated. We simplify the proof in this note. | uk_UA |
| dc.identifier.citation | A simplified proof of the reduction point crossing sign formula for Verma modules / M.St. Denis, W.L. Yee // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 195–202. — Бібліогр.: 7 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC: 22E50, 05E10 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/188488 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | A simplified proof of the reduction point crossing sign formula for Verma modules | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: