Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
dc.contributor.author | Boyer, C.P. | |
dc.date.accessioned | 2019-02-13T18:32:17Z | |
dc.date.available | 2019-02-13T18:32:17Z | |
dc.date.issued | 2011 | |
dc.description.abstract | I begin by giving a general discussion of completely integrable Hamiltonian systems in the setting of contact geometry. We then pass to the particular case of toric contact structures on the manifold S²×S³. In particular we give a complete solution to the contact equivalence problem for a class of toric contact structures, Yp,q, discovered by physicists by showing that Yp,q and Yp',q' are inequivalent as contact structures if and only if p≠p'. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. During the conference I enjoyed conversations with E. Kalnins, N. Kamran, J. Kress, W. Miller Jr., and P. Winternitz. I also want to thank J. Pati, my collaborator in [25] without whom the present paper could not have been written. | uk_UA |
dc.identifier.citation | Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ / C.P. Boyer // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 58 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 53D42; 53C25 | |
dc.identifier.other | DOI:10.3842/SIGMA.2011.058 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147180 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³ | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: