On strongly graded Gorestein orders
dc.contributor.author | Theohari-Apostolidi, Th. | |
dc.contributor.author | Vavatsoulas, H. | |
dc.date.accessioned | 2019-06-18T17:55:03Z | |
dc.date.available | 2019-06-18T17:55:03Z | |
dc.date.issued | 2005 | |
dc.description.abstract | Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : ModΛH → ModΛ defined in Section 3, for a subgroup H of G, commutes with the standard duality functor. | uk_UA |
dc.identifier.citation | On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 16H05, 16G30, 16S35, 16G10, 16W50. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/156618 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | On strongly graded Gorestein orders | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 07-Theohari-Apostolidi.pdf
- Розмір:
- 156.29 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: