Application of the volume learning algorithm artificial neural networks for recognition of the type of interaction between neurons from their cross-correlation histograms

dc.contributor.authorKovalishyn, V.V.
dc.contributor.authorTetko, I.V.
dc.date.accessioned2010-12-13T16:23:45Z
dc.date.available2010-12-13T16:23:45Z
dc.date.issued2005
dc.description.abstractAn algorithm based on two types artificial neural networks (ANNs) is proposed. The first network is an associative ANN while the second network is a Self-Organizing Map of Kohonen. The results for a test set are similar to the performance of our pre-vious expert system algorithm developed with Group Method of Data Handling (GMDH). However, while GMDH uses indices derived using the expert knowledge (and thus require considerable time and resources) the VLA process initial raw data.uk_UA
dc.description.abstractДля решения задачи распознавания типов взаимодействия между нейронами предложен алгоритм, основанный на использовании двух типов искусственных нейронных сетей (ИНС). Первая сеть представляет собой ассоциативную ИНС, тогда как вторая — самоорганизующиеся карты Кохонена. Результаты, полученные для тестового набора данных, подобны результатам, найденным методом группового учета аргументов (МГУА). Однако новый подход использует только исходные данные, тогда как МГУА — производные индексов, полученные дополнительным анализом начальных индексов.uk_UA
dc.description.abstractДля вирішення задачі розпізнавання типів взаємодії між нейронами запропоновано алгоритм, заснований на використанні двох типів штучних нейронних мереж (ШНМ). Перша мережа представляє собою асоціативну ШНМ, тоді як друга — карту Кохонена, що самоорганізується. Результати тестування на наборі даних подібні до результатів, отриманих методом групового врахування аргументів (МГВА). Однак новий підхід використовує тільки початкові дані, тоді як МГВА — похідні індексів, отримані додатковим аналізом початкових індексів.uk_UA
dc.identifier.citationApplication of the volume learning algorithm artificial neural networks for recognition of the type of interaction between neurons from their cross-correlation histograms / V.V. Kovalishyn, I.V. Tetko // Систем. дослідж. та інформ. технології. — 2005. — № 3. — С. 48-56. — Бібліогр.: 20 назв. — англ.uk_UA
dc.identifier.issn1681–6048
dc.identifier.udc519.688
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/14089
dc.language.isoenuk_UA
dc.publisherНавчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН Україниuk_UA
dc.statuspublished earlieruk_UA
dc.subjectПрогресивні інформаційні технології, високопродуктивні комп’ютерні системиuk_UA
dc.titleApplication of the volume learning algorithm artificial neural networks for recognition of the type of interaction between neurons from their cross-correlation histogramsuk_UA
dc.title.alternativeПрименение алгоритма пространственного обучения искусственных нейронных сетей для распознавания типа взаимодействия нейронов по их кросскорреляционной гистограммеuk_UA
dc.title.alternativeВикористання алгоритму просторового навчання штучних нейронних мереж для розпізнавання типу взаємодії нейронів по їх кроскореляційній гістограміuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-Kovalishyn.pdf
Розмір:
119.81 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
895 B
Формат:
Item-specific license agreed upon to submission
Опис: