Some combinatorial problems in the theory of partial transformation semigroups

dc.contributor.authorUmar, A.
dc.date.accessioned2019-06-10T11:03:52Z
dc.date.available2019-06-10T11:03:52Z
dc.date.issued2014
dc.description.abstractLet Xn = {1,2,…,n}. On a partial transformation α : Dom α ⊆ Xn → Im α ⊆ Xn of Xn the following parameters are defined: the breadth or width of α is ∣ Dom α ∣, the collapse of α is c(α) = ∣ ∪t∈Imα{tα⁻¹ :∣ tα⁻¹ ∣≥ 2} ∣, fix of α is f(α) = ∣ {x ∈ Xn : xα = x} ∣, the height of α is ∣ Imα ∣, and the right [left] waist of α is max(Imα) [min(Imα)]. The cardinalities of some equivalences defined by equalities of these parameters on Tn, the semigroup of full transformations of Xn, and Pn the semigroup of partial transformations of Xn and some of their notable subsemigroups that have been computed are gathered together and the open problems highlighted.uk_UA
dc.description.sponsorshipThe ideas for this work were formed during a one month stay at Wilfrid Laurier University in the Summer of 2007. This paper is based on the talk I gave at the 5th NBSAN Meeting, University of St Andrews, May 2010. I would like to thank Professor A. Laradji for his useful suggestions and encouragement. My sincere thanks also to Professor S. Bulman-Fleming and the Department of Mathematics and Statistics, Wilfrid Laurier University.uk_UA
dc.identifier.citationSome combinatorial problems in the theory of partial transformation semigroups / A. Umar // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 110–134. — Бібліогр.: 56 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC:20M17, 20M20, 05A10, 05A15.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/152350
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleSome combinatorial problems in the theory of partial transformation semigroupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
08-Umar.pdf
Розмір:
192.12 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: