Exceptional Legendre Polynomials and Confluent Darboux Transformations
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of ''exceptional'' degrees. In this paper, we introduce a new construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator. Using confluent Darboux transformations and a technique from inverse scattering theory, we obtain a fully explicit description of the operators and polynomials in question. The main novelty of the paper is the novel construction that allows for exceptional polynomial families with an arbitrary number of real parameters.
Опис
Теми
Цитування
Exceptional Legendre Polynomials and Confluent Darboux Transformations. María Ángeles García-Ferrero, David Gómez-Ullate and Robert Milson. SIGMA 17 (2021), 016, 19 pages