Algebra in superextensions of groups, I: zeros and commutativity
dc.contributor.author | Banakh, T.T. | |
dc.contributor.author | Gavrylkiv, V. | |
dc.contributor.author | Nykyforchyn, O. | |
dc.date.accessioned | 2019-06-14T03:39:46Z | |
dc.date.available | 2019-06-14T03:39:46Z | |
dc.date.issued | 2008 | |
dc.description.abstract | Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X endowed with the operation A∘B={C⊂X:{x∈X:x−1C∈B}∈A} that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|≤5. The semigroup λ(X) is commutative if and only if |X|≤4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|≤5. | uk_UA |
dc.identifier.citation | Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 20M99, 54B20. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/153373 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Algebra in superextensions of groups, I: zeros and commutativity | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: