Eigenfunction Expansions of Functions Describing Systems with Symmetries

dc.contributor.authorKachuryk, I.
dc.contributor.authorKlimyk, A.
dc.date.accessioned2019-02-16T08:34:13Z
dc.date.available2019-02-16T08:34:13Z
dc.date.issued2007
dc.description.abstractPhysical systems with symmetries are described by functions containing kinematical and dynamical parts. We consider the case when kinematical symmetries are described by a noncompact semisimple real Lie group G. Then separation of kinematical parts in the functions is fulfilled by means of harmonic analysis related to the group G. This separation depends on choice of a coordinate system on the space where a physical system exists. In the paper we review how coordinate systems can be chosen and how the corresponding harmonic analysis can be done. In the first part we consider in detail the case when G is the de Sitter group SO₀(1,4). In the second part we show how the corresponding theory can be developed for any noncompact semisimple real Lie group.uk_UA
dc.identifier.citationEigenfunction Expansions of Functions Describing Systems with Symmetries / I. Kachuryk, A. Klimyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 52 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 22E43; 22E46; 33C80; 42C10; 45C05; 81Q10
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147805
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleEigenfunction Expansions of Functions Describing Systems with Symmetriesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
55-Kachuryk.pdf
Розмір:
751.4 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: