Do All Integrable Evolution Equations Have the Painlevé Property?
dc.contributor.author | Tamizhmani, K.M. | |
dc.contributor.author | Grammaticos, B. | |
dc.contributor.author | Ramani, A. | |
dc.date.accessioned | 2019-02-14T14:57:07Z | |
dc.date.available | 2019-02-14T14:57:07Z | |
dc.date.issued | 2007 | |
dc.description.abstract | We examine whether the Painlevé property is necessary for the integrability of partial differential equations (PDEs). We show that in analogy to what happens in the case of ordinary differential equations (ODEs) there exists a class of PDEs, integrable through linearisation, which do not possess the Painlevé property. The same question is addressed in a discrete setting where we show that there exist linearisable lattice equations which do not possess the singularity confinement property (again in analogy to the one-dimensional case). | uk_UA |
dc.identifier.citation | Do All Integrable Evolution Equations Have the Painlevé Property? / K.M. Tamizhmani, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 34A99; 35A21; 39A12 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147384 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Do All Integrable Evolution Equations Have the Painlevé Property? | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 73-Tamizhmani.pdf
- Розмір:
- 156.35 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: