The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs
| dc.contributor.author | Pawlik, B.T. | |
| dc.date.accessioned | 2019-06-16T14:38:23Z | |
| dc.date.available | 2019-06-16T14:38:23Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | Base (minimal generating set) of the Sylow 2-subgroup of S₂n is called diagonal if every element of this set acts non-trivially only on one coordinate, and different elements act on different coordinates. The Sylow 2-subgroup Pn(2) of S₂n acts by conjugation on the set of all bases. In presented paper the~stabilizer of the set of all diagonal bases in Sn(2) is characterized and the orbits of the action are determined. It is shown that every orbit contains exactly 2n−1 diagonal bases and 2²n−²n bases at all. Recursive construction of Cayley graphs of Pn(2) on diagonal bases (n≥2) is proposed. | uk_UA |
| dc.identifier.citation | The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs / B.T. Pawlik // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 264–281. — Бібліогр.: 6 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC:20B35, 20D20, 20E22, 05C25. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/155248 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: