The Chazy XII Equation and Schwarz Triangle Functions
| dc.contributor.author | Bihun, O. | |
| dc.contributor.author | Chakravarty, S. | |
| dc.date.accessioned | 2019-02-19T19:45:29Z | |
| dc.date.available | 2019-02-19T19:45:29Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348] showed that the Chazy XII equation y′′′−2yy′′+3y′²=K(6y′−y²)², K∈C, is equivalent to a projective-invariant equation for an affine connection on a one-dimensional complex manifold with projective structure. By exploiting this geometric connection it is shown that the Chazy XII solution, for certain values of K, can be expressed as y=a₁w₁+a₂w₂+a₃w₃ where wi solve the generalized Darboux-Halphen system. This relationship holds only for certain values of the coefficients (a1,a2,a3) and the Darboux-Halphen parameters (α,β,γ), which are enumerated in Table 2. Consequently, the Chazy XII solution y(z) is parametrized by a particular class of Schwarz triangle functions S(α,β,γ;z) which are used to represent the solutions wi of the Darboux-Halphen system. The paper only considers the case where α+β+γ<1. The associated triangle functions are related among themselves via rational maps that are derived from the classical algebraic transformations of hypergeometric functions. The Chazy XII equation is also shown to be equivalent to a Ramanujan-type differential system for a triple (P^,Q^,R^). | uk_UA |
| dc.description.sponsorship | The work of SC was partly supported by NSF grant No. DMS-1410862. The work of OB was supported in part by a CRCW grant from University of Colorado, Colorado Springs. The authors thank Professor Mark Ablowitz for useful discussions, as well as the anonymous referees for their valuable remarks which substantially improved the article. | uk_UA |
| dc.identifier.citation | The Chazy XII Equation and Schwarz Triangle Functions / O. Bihun, S. Chakravarty // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 34M45; 34M55; 33C05 | |
| dc.identifier.other | DOI:10.3842/SIGMA.2017.095 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149278 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | The Chazy XII Equation and Schwarz Triangle Functions | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: