Повышение эффективности инкрементной кластеризации нечетких данных

dc.contributor.authorКадомский, К.К.
dc.date.accessioned2017-09-19T20:09:21Z
dc.date.available2017-09-19T20:09:21Z
dc.date.issued2012
dc.description.abstractРассмотрена задача кластеризации данных динамических измерений. Эта задача решается статистическим инкрементным методом. Предложен последовательный инкрементный алгоритм кластеризации нечетких данных, в котором модель кластера и модель входного образа учитывают их центр и форму. Для оценки расстояния между моделями предложена модификация расстояния Махаланобиса, которая сохраняет эвклидово расстояние в случае одноточечных моделей и позволяет сократить вычисления по сравнению с использованием расстояния Баттачария. Предложенный алгоритм позволяет повысить эффективность кластеризации по сравнению с существующими инкрементными алгоритмами и повысить скорость кластеризации по сравнению с итеративным ЕМ алгоритмом.uk_UA
dc.description.abstractРозглянуто задачу кластеризацiї даних динамiчних вимiрiв. Ця задача вирiшується статистичним iнкрементним методом. Запропоновано послiдовний iнкрементний алгоритм кластеризацiї нечiтких даних, в якому модель кластера та модель вхiдного образу враховують їх центр i форму. Для оцiнки вiдстанi мiж моделями запропоновано модифiкацiю вiдстанi Махаланобiса, яка зберiгає евклiдову вiдстань у випадку одноточкових моделей i дозволяє скоротити обчислення в порiвняннi з використанням вiдстанi Баттачарiя. Запропонований алгоритм дозволяє пiдвищити ефективнiсть кластеризацiї в порiвняннi з iснуючими iнкрементними алгоритмами та пiдвищити швидкiсть кла- стеризацiї в порiвняннi з iтеративним ЕМ алгоритмом.uk_UA
dc.description.abstractThe problem of dynamic data clustering is addressed. This problem is solved by statistical incremental method. The sequential incremental fuzzy data clustering algorithm is proposed, in which the cluster model and the input model account for their center and shape. For estimating distance between models the modification of Mahalanobis distance is proposed, which preserves Euclidean distance in case of single-point models and allows reducing calculations in comparison with the use of Bhattacharyya distance. The proposed algorithm allows to improve clustering efficiency in comparison with existing incremental algorithms, and to improve clustering speed in comparison with iterative EM algorithm.uk_UA
dc.identifier.citationПовышение эффективности инкрементной кластеризации нечетких данных / К.К. Кадомский // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2012. — Т. 24. — С. 124-133. — Бібліогр.: 21 назв. — рос.uk_UA
dc.identifier.issn1683-4720
dc.identifier.udc004.852
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/124081
dc.language.isoruuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofТруды Института прикладной математики и механики
dc.statuspublished earlieruk_UA
dc.titleПовышение эффективности инкрементной кластеризации нечетких данныхuk_UA
dc.title.alternativeПiдвищення ефективностi iнкрементної кластеризацiї нечiтких данихuk_UA
dc.title.alternativeEfficient incremental clustering of fuzzy datauk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
12-Kadomsky.pdf
Розмір:
707.08 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: