Динамические системы и моделирование турбулентности
| dc.contributor.author | Романенко, Е.Ю. | |
| dc.contributor.author | Шарковский, А.Н. | |
| dc.date.accessioned | 2010-01-25T17:26:02Z | |
| dc.date.available | 2010-01-25T17:26:02Z | |
| dc.date.issued | 2007 | |
| dc.description.abstract | Окреслено підхід до аналізу турбулентних коливань, що описуються нелінійними крайовими задачами для рівнянь з частинними похідними. Цей підхід базується на переході до динамічної системи зсувів вздовж розв'язків і використовує поняття ідеальної турбулентності - математичного явища, за якого атрактор нескінченновимірної динамічної системи міститься не у фазовому просторі системи, а у ширшому функціональному просторі і серед "точок" атрактора є фрактальні або й випадкові функції. Описано сценарій турбулентності в системах з регулярною динамікою на атракторі, коли просторово-часова хаотизація системи, зокрема перемішування, автостохастичність, каскадний процес утворення структур, зумовлені дуже складною внутрішньою організацією "точок" атрактора - елементів ширшого функціонального простору. Такий сценарій реалізується у певних ідеалізованих моделях розподілених систем електродинаміки, акустики, радіофізики. | uk_UA |
| dc.description.abstract | We propose an approach to the analysis of turbulent oscillations described by nonlinear boundary-value problems for partial differential equations. This approach is based on the transition to a dynamical system of shifts along solutions and uses the notion of ideal turbulence (a mathematical phenomenon such that the attractor of an infinite-dimensional dynamical system lies not in the phase space of the system but in a wider functional space and, among attractor “points”, there are fractal or random functions). A scenario for ideal turbulence in systems with regular dynamics on an attractor is described; in this case, the space-time chaotization of a system, in particular, the intermixing, the self-stochastisity, and the cascade process of creation of structures, is due to the very complicated organization of attractor “points” (elements of a certain wider functional space). Such a scenario is available in some idealized models of parameter-distributed systems in electrodynamics, acoustics, radiophysics, etc. | uk_UA |
| dc.identifier.citation | Динамические системы и моделирование турбулентности / Е.Ю. Романенко, А.Н. Шарковский // Укр. мат. журн. — 2007. — Т. 59, № 2. — С. 217-230. — Бібліогр.: 49 назв. — рос. | uk_UA |
| dc.identifier.issn | 1027-3190 | |
| dc.identifier.udc | 517.9 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/5527 | |
| dc.language.iso | ru | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.status | published earlier | uk_UA |
| dc.subject | Статті | |
| dc.title | Динамические системы и моделирование турбулентности | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 07-Romanenko.pdf
- Розмір:
- 205.29 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 1.82 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: