Populations of Solutions to Cyclotomic Bethe Equations
dc.contributor.author | Varchenko, A. | |
dc.contributor.author | Young, C.A.S. | |
dc.date.accessioned | 2019-02-13T16:57:57Z | |
dc.date.available | 2019-02-13T16:57:57Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain ''extended'' master function. In finite types, this yields a correspondence between the Bethe eigenvectors and eigenvalues of the cyclotomic Gaudin model and those of an ''extended'' non-cyclotomic Gaudin model. We proceed to define populations of solutions to the cyclotomic Bethe equations, in the sense of [Mukhin E., Varchenko A., Commun. Contemp. Math. 6 (2004), 111-163, math.QA/0209017], for diagram automorphisms of Kac-Moody Lie algebras. In the case of type A with the diagram automorphism, we associate to each population a vector space of quasi-polynomials with specified ramification conditions. This vector space is equipped with a Z₂-gradation and a non-degenerate bilinear form which is (skew-)symmetric on the even (resp. odd) graded subspace. We show that the population of cyclotomic critical points is isomorphic to the variety of isotropic full flags in this space. | uk_UA |
dc.description.sponsorship | The research of AV is supported in part by NSF grant DMS-1362924. CY is grateful to the Department of Mathematics at UNC Chapel Hill for hospitality during a visit in October 2014 when this work was initiated. CY thanks Benoit Vicedo for valuable discussions. | uk_UA |
dc.identifier.citation | Populations of Solutions to Cyclotomic Bethe Equations / A. Varchenko, C.A.S Young // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 82B23; 32S22; 17B81; 81R12 | |
dc.identifier.other | DOI:10.3842/SIGMA.2015.091 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147118 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Populations of Solutions to Cyclotomic Bethe Equations | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 091-Varchenko.pdf
- Розмір:
- 681.42 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: