H -supplemented modules with respect to a preradical
dc.contributor.author | Yahya Talebi | |
dc.contributor.author | A. R. Moniri Hamzekolaei | |
dc.contributor.author | Derya Keskin Tutuncu | |
dc.date.accessioned | 2019-06-16T05:31:52Z | |
dc.date.available | 2019-06-16T05:31:52Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and only if M₁ and M₂ are τ-H-supplemented. Secondly, let M=⊕ⁿi=1Mi be a τ-supplemented module. Assume that Mi is τ-Mj-projective for all j>i. If each Mi is τ-H-supplemented, then M is τ-H-supplemented. We also investigate the relations between τ-H-supplemented modules and τ-(⊕-)supplemented modules. | uk_UA |
dc.description.sponsorship | The authors would like to thank Prof. R. Wisbauer and the referee for their helpfulcomments and carefully reading this article | uk_UA |
dc.identifier.citation | H -supplemented modules with respect to a preradical/ Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 116–131. — Бібліогр.: 16 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification:16S90, 16D10, 16D70, 16D99. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/154821 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | H -supplemented modules with respect to a preradical | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: