H -supplemented modules with respect to a preradical

dc.contributor.authorYahya Talebi
dc.contributor.authorA. R. Moniri Hamzekolaei
dc.contributor.authorDerya Keskin Tutuncu
dc.date.accessioned2019-06-16T05:31:52Z
dc.date.available2019-06-16T05:31:52Z
dc.date.issued2011
dc.description.abstractLet M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and only if M₁ and M₂ are τ-H-supplemented. Secondly, let M=⊕ⁿi=1Mi be a τ-supplemented module. Assume that Mi is τ-Mj-projective for all j>i. If each Mi is τ-H-supplemented, then M is τ-H-supplemented. We also investigate the relations between τ-H-supplemented modules and τ-(⊕-)supplemented modules.uk_UA
dc.description.sponsorshipThe authors would like to thank Prof. R. Wisbauer and the referee for their helpfulcomments and carefully reading this articleuk_UA
dc.identifier.citationH -supplemented modules with respect to a preradical/ Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 116–131. — Бібліогр.: 16 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification:16S90, 16D10, 16D70, 16D99.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/154821
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleH -supplemented modules with respect to a preradicaluk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Talebi.pdf
Розмір:
207.02 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: